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In the inverse scattering transform (IST), the reflectionless Jost solutions are combined
by their analytic properties in the complex spectrum parameter plane, and then can be
shown to satisfy the two Lax equations indeed by Liouville theorem. So the correspond-
ing soliton solutions certainly satisfy the nonlinear equation by compatibility condition.
Especially the multi-soliton solutions of DNLS equation can be demonstrated in this
way.
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1. INTRODUCTION

DNLS equation with vanishing boundary condition is

iut + uxx + i(|u|2u)x = 0 (1)

and its Lax pair is given by

L = λ(−iλσ3 + U ), U = uσ+ − ūσ− (2)
and

M = −i2λ4σ3 + 2λ3U − iλ2U 2σ3 − λ(−U 3 + iUxσ3) (3)

In order to solve it, Kaup and Newell introduce a new spectral parameter κ = λ−1

and construct inverse scattering transform (IST) in complex κ-plane (Kaup and
Newell, 1978a,b). Some other authors, Wadati et al. (1979), for example, do
not recognize essentials of this procedure, and construct IST in complex λ-plane
persistently. Though they can give explicit expression of a single-soliton solution
equivalent to that of Kaup and Newell, the procedure of derivation and the final
results are more complicated. On the other hand, it is hard to show N -soliton
solution given by Wadati et al. equivalent to that given by Kaup and Newell.
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Recently, DNLS equation still attracts much attention, for example, there are
some works for developing its perturbation theory (Chen and Yang, 2002; Kaup,
1990, 1991). So the soliton solutions of DNLS equation, especially in multi-soliton
case, are needed to be demonstrated.

As is well known, the rightness of a soliton solution is verified finally by
direct substitution. But for multi-soliton solution the direct substitution is only in
principle, not in practice. In the case of nonlinear Schrödinger equation (NLS), its
Jost solutions can be factorized as a product of Blaschiek’s matrices in a recur-
sive manner with the method of Darboux transformation matrix (or equivalently
Riemann–Hilbert method with zeroes). As a result, if the single-soliton Jost solu-
tions satisfy the Lax equations, the corresponding multi-soliton Jost solutions also
do so in a recursive manner, and then the multi-soliton solutions certainly satisfy
NLS equation by compatibility condition.

On the other hand, the demonstration of multi-soliton solutions in this way
is also applicable to the results obtained by the IST method. Usually, the Jost
solutions found by IST in reflectionless case are composed two in a 2 × 2 matrix
form by same asymptotic behaviors, � = (ψ̃, ψ) in x → ∞, and � = (φ, φ̃) in
x → −∞. If one composes two matrices with the same analytic properties in a
2 × 2 matrix form, F̃ = (ψ̃, φ̃) and F = (φ, ψ), they can be shown to be equiv-
alent to those in the method of Darboux transformation matrix, or in Riemann–
Hilbert method with zeros. Therefore, the Jost solutions obtained by IST method
in reflectionless case satisfy also the Lax equations, and then the corresponding
multi-soliton solutions definitely satisfy NLS equation by compatibility condition.

In this paper, we demonstrate multi-soliton solutions for DNLS equation
given by Kaup–Newell in this way. With the matrix F̃ (x, t, κ) composed by
two Jost solutions with the same analytic properties in complex κ-plane, we
firstly introduce F̃ (x, t, κ)′ that is shown to be its right inverse by Liouville
theorem in complex analysis, and then to be its left inverse due to the case
that they are 2 × 2 matrices. Secondly, we discuss the analytic properties of
F̃ (x, t, κ)xF̃ (x, t, κ)′ in whole κ-plane, and obtained its residues at |κ| → ∞
and at |κ| → 0. So the resulted expression of F̃ (x, t, κ)xF̃ (x, t, κ)′ subtracting
these two residues is analytic in the whole κ-plane and should be a constant
by Liouville theorem. We thus show F̃ (x, t, κ) satisfy the first Lax equation.
Finally, the analytic properties of F̃ (x, t, κ)t F̃ (x, t, κ)′ are discussed with similar
procedure and F̃ (x, t, κ) is found to satisfy the second Lax equation definitely.
Therefore, the multi-soliton solutions obtained by compatibility condition of Jost
solutions satisfy the DNLS equation.
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2. JOST SOLUTIONS

The first Lax equation is

∂xF (x, κ) = L(x, κ)F (x, κ) (4)

where L(κ) is obtained from Equation (2) by simple replacement of λ by κ−1. To
do so, the first Lax pair L(κ) is only singular at zero in the whole complex κ-plane,
not like that L(λ) in (2) is singular at infinity in the λ-plane, which is beneficial to
solve DNLS equation by IST method.

The vanishing boundary condition of DNLS equation is, in the limit of
|x| → ±∞, u → 0, and then L → −iκ−2σ3. As a result, the free Jost solution is

E(x, κ) = e−iκ−2xσ3 (5)

which expresses two independent solutions with two components as κ−2 is real.
Correspondingly, the Jost solutions are defined as

�(x, κ) = (ψ̃(x, κ), ψ(x, κ)) → E(x, κ), as x → ∞ (6)

and

�(x, κ) = (φ(x, κ), φ̃(x, κ)) → E(x, κ), as x → −∞ (7)

Then introducing monodramy matrix T (κ), one has

�(x, κ) = �(x, κ)T (κ), T (κ) =
(

a(κ) −b̃(κ)

b(κ) ã(κ)

)
(8)

where ψ(x, κ), φ(x, κ), and a(κ) are analytic in the domain of Im κ−2 > 0, namely,
in II and IV quadrants in κ-plane; ψ̃(x, κ), φ̃(x, κ), and ã(κ) are analytic in the
domain of Im κ−2 < 0, namely, in I and III quadrants in κ-plane.

The Jost solutions of DNLS equation have some properties similar to those
of NLS equation, for example,

ψ̃(x, κ̄) = −iσ2ψ(x, κ), φ̃(x, κ̄) = iσ2φ(x, κ) (9)

and

ã(κ̄) = a(κ), b̃(κ̄) = −b(κ) (10)

At the same time, Jost solutions in DNLS equation have some special, that is

�(−κ) = σ3�(κ)σ3, �(−κ) = σ3�(κ)σ3 (11)

and

a(−κ) = a(κ), b(−κ) = −b(κ) (12)

These transformation properties of the Jost solutions and monodramy matrix are
essential to solving DNLS equation by IST method, and they are same with that of
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the spectrum parameter λ. And in the reflectionless case, one should only consider
the discreet spectrum part of a(κ), that is

a(κ) =
∏
n

κ2 − κ2
n

κ2 − κ̄2
n

(13)

where κn are zeroes of a(κ) and the transformation property (12) has been taken
into account.

Then also from the first Lax equation (4), one can find the relation between
the Jost solutions and the soliton solution u of DNLS equation, for example

u = −i lim
|κ|→0

κ−1ψ̃2(x, t, κ)

ψ̃1(x, t, κ)
(14)

In the case of reflectionless, one constructs the IST equation by standard procedure
in complex κ-plane, that is

ψ̃(x, t, κ) =
(

1

0

)
e−ip(κ) +

∑
n

1

κ − κn

1

ȧ(κn)
φ(x, t, κn)eip(κn)e−ip(κ), (15)

where p(κ) ≡ κ−2(x + 2κ−2t) implying the time dependence, and ȧ(κn) =
d
dκ

a(κ)|κ=κn
. Similarly, one has another IST equation

φ̃(x, t, κ) =
(

0

1

)
eip(κ) +

∑
n

1

κ − κn

1

ȧ(κn)
ψ(x, t, κn)e−ip(κn)eip(κ), (16)

These two inverse scattering transformation equations could be taken together to
obtain the explicit expressions of the Jost solutions, and then the soliton solution
u from (14).

3. INTRODUCTION OF RIGHT INVERSE OF F̃(x, t, ζ )

The Jost solutions �(x, t, κ) and �(x, t, κ) are defined by their asymptotic
behaviors in (6) and (7). In the complex κ-plane, one should combined the Jost
solutions by their analytical properties according to κ , that is

F̃ (x, t, κ) = (ψ̃(x, t, κ) φ̃(x, t, κ)) (17)

F (x, t, κ) = (φ(x, t, κ) ψ(x, t, κ)) (18)

and then for discreet spectrum parameter

F̃ (x, t, κ̄n) = ψ̃(x, t, κ̄n)(1 b̃n) (19)

F (x, t, κn) = ψ(x, t, κn)(bn 1) (20)
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In order to demonstrate the Jost solutions satisfy the Lax equations, one should
find the inverse of F̃ (x, t, ζ ).

Introducing

F̃ (x, t, κ)′ = σ2F (x, t, κ)Tσ2 (21)

F̃ (x, t, κ)F̃ (x, t, κ)′ seems to have two kinds of singularities in the whole κ-plane,
one at κn and the other at κ̄n. But it is not the truth because F̃ (x, t, κ)F̃ (x, t, κ)′

tends to

lim
κ→κn

{
1

κ − κn

1

ȧ(κn)
ψ(x, t, κn)(bn 1)

}(
1
−bn

)
ψ(x, t, κn)T(−iσ2) = 0 (22)

at κn and also tends to

lim
κ→κ̄m

ψ̃(x, t, κ̄m)(1 − b̃m)

{
1

κ − κ̄m

1
˙̃a(κ̄m)

(
b̃m

1

)
ψ̃(x, κ̄m)T(iσ2)

}
= 0. (23)

at κ̄m, which means that F̃ (x, t, κ)F̃ (x, t, κ)′ is analytic in the whole κ-plane.
Then from (15) and (17), the asymptotic behavior of F̃ (x, t, κ)F̃ (x, t, κ)′ is

lim
|κ|→∞

F̃ (x, t, κ)F̃ (x, t, κ)′ = I (24)

Thus, according to Liouville theorem, F̃ (x, t, κ)′ is the right inverse of F̃ (x, t, κ),
that is

F̃ (x, t, κ)F̃ (x, t, κ)′ = I (25)

And since F̃ (x, t, κ) is 2 × 2 matrix, F̃ (x, t, ζ )′ is also the left inverse of F̃ (x, t, ζ ),
which means that F̃ (x, t, ζ )′ is actually the inverse of F̃ (x, t, ζ ).

With Equations (15) and (17), one rewrites F̃ (x, t, κ) in the form

F̃ (x, t, κ) = D̃(x, t, κ)e−ip(κ)σ3 , (26)

where

D̃(x, t, κ) = I +
∑

n

1

κ − κn

1

ȧ(κn)
ψ(x, t, κn)(bn 1)eip(κn)σ3 (27)

Combining the contributions from κn and from −κn, D̃(x, t, κ) becomes

D̃(x, t, κ) = I +
∑

n

2κ

κ2 − κ2
n

1

ȧ(κn)

(
0 ψ1(x, t, κn)

ψ2(x, t, κn)bn 0

)
eip(κn)σ3 (28)

+
∑

n

2κn

κ2 − κ2
n

1

ȧ(κn)

(
ψ1(x, t, κn)bn 0

0 ψ2(x, t, κn)

)
eip(κn)σ3
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Expanding Equation (30) in the limit of κ → 0, one has

D̃(x, t, κ) =
∞∑

j=0

νjκ
j , (29)

where

ν0 = I −
∑

n

2

κn

1

ȧ(κn)

(
ψ1(x, t, κn)bn 0

0 ψ2(x, t, κn)

)
eip(κn)σ3 (30)

ν1 = −
∑

n

2

κ2
n

1

ȧ(κn)

(
0 ψ1(x, t, κn)

ψ2(x, t, κn)bn 0

)
eip(κn)σ3 (31)

. . . . . .

Since ν0 is diagonal and ν1 is not, one has

−i[ν0, σ3] = 0, − i[ν1, σ3] = U (32)

where the relation between the Jost solutions and the soliton solutions (14) has
been used.

Then from Equation (23), F̃ (x, t, κ)′ has the form

F̃ (x, t, κ)′ = eip(κ)σ3D̃(x, t, κ)′ (33)

where

D̃(x, t, κ)′ =
∞∑

j=0

ν ′
j κ

j , (34)

and, for D̃(x, t, κ)D̃(x, t, κ)′ = I , there are

ν0ν
′
0 = I,

∑
j+k=m

νjν
′
k = δm0I (35)

In the following work, one should show that F̃ (x, t, κ) satisfies the Lax equations.

4. DEMONSTRATION OF THE FIRST LAX EQUATION

In order to show that F̃ (x, t, κ) satisfies the first Lax equation, one should
consider

F̃ (x, t, κ)xF̃ (x, t, κ)′ = D̃(κ)xD̃(κ)′ − iκ−2D̃(κ)σ3D̃(κ)′ (36)

where −iκ−2D̃(κ)σ3D̃(κ)′ has obviously a pole of second degree at κ = 0, and
κn and κ̄m are not singularities, since the partial derivative of x does not affect the
factors (bn 1)(1 − bn)T and (1 − b̃m)(b̃m 1)T in (23) and (24).
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Thus, F̃ (x, t, κ)xF̃ (x, t, κ)′ has the following asymptotic expansion

F̃ (x, t, κ)xF̃ (x, t, κ)′ = R2κ
−2 + R1κ

−1 + O(1) (37)

as |κ| → 0. From Equations (14) and (31), etc., R2 and R1 are expressed as

R2 = −iν0σ3ν
′
0 = −iσ3, (38)

R1 = −i(ν1σ3ν
′
0 + ν0σ3ν

′
1) = −i[ν1, σ3]ν ′

0 = U (39)

In the limit of |κ| → ∞, from the definition of D̃(x, t, κ) in (28), one has

D̃(x, t, κ) → I, D̃(x, t, κ)x → 0 (40)

which means that F̃ (x, t, κ)xF̃ (x, t, κ)′ − R2κ
−2 − R1κ

−1 is analytic in whole κ-
plane and goes to zero as |κ| → ∞. Therefore, by Liouville theorem, one finally
obtains

F̃ (x, t, κ)x = {−iκ−2σ3 + κ−1U}F̃ (x, t, κ) (41)

It is just the first Lax equation.

5. DEMONSTRATION OF THE SECOND LAX EQUATION

To derive the second Lax equation, one considers similar to Equation (37)

F̃ (x, t, κ)t F̃ (x, t, κ)′ = D̃(κ)t D̃(κ)′ − i2κ−4D̃(κ)σ3D̃(κ)′ (42)

where −i2κ−4D̃(κ)σ3D̃(κ)−1 has obviously a pole of fourth degree at κ = 0, and,
similar to (38), there is

F̃ (x, t, κ)t F̃ (x, t, κ)′ = −i2σ3κ
−4 + 2Uκ−3 + S2κ

−2 + S1κ
−1 + O(1) (43)

as |κ| → 0, where

S2 = −i2(ν2σ3ν
′
0 + ν1σ3ν

′
1 + ν0σ3ν

′
2) (44)

S1 = −i2(ν3σ3ν
′
0 + ν2σ3ν

′
1 + ν1σ3ν

′
2 + ν0σ3ν

′
3) (45)

The desired first Lax equation (41) is also

D̃(κ)xD̃(κ)′ − iκ−2D̃(κ)σ3D̃(κ)′ = −iκ−2σ3 + κ−1U (46)

and should be expanded in the limit of |κ| → 0, of which the terms of power of
κ0 and κ1 give

S2 = −2ν0xν
′
0, S1 = −2(ν1xν

′
0 + ν0xν

′
1) (47)

Also from Equation (41), one has

D̃xx(κ)σ3D̃(κ)† − i2κ−2D̃x(κ)D̃(κ)† = {κ−2U 2 + κ−1Ux}D̃(κ)σ3D̃(κ)† (48)
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Correspondingly, its terms of power of κ−2 and of κ−1 are

−i2ν0xν
′
0 = U 2(ν0σ3ν

′
0) = U 2σ3 (49)

−i2(ν1xν
′
0 + ν0xν

′
1) = U 2(ν1σ3ν

′
0 + ν0σ3ν

′
1) + Ux(ν0σ3ν

′
0) = iU 3 + Uxσ3 (50)

so that one could express S2 and S1 in terms of U .
Also for the definition of D̃(x, t, κ) in (28), there is

D̃(x, t, κ)t → 0, as |κ| → ∞ (51)

and thus

∂t F̃ (x, t, κ)F̃ (x, t, κ)−1 − {S4κ
−4 + S3κ

−3 + S2κ
−2 + S1κ

−1} (52)

is analytic in whole κ-plane and tends to zero in the limit of |κ| → ∞. Then from
Liouville theorem, it is equal to zero, that is

∂t F̃ (x, t, κ) = {−i2κ−4σ3 + 2κ−3U

−iκ−2U 2σ3 − κ−1(−U 3 + iUxσ3)}F̃ (x, t, κ) (53)

which just coincides with the second Lax equation.

6. DISCUSSION

The demonstration of multi-soliton solutions is the fundamental problem
of the inverse scattering transformation method for solving nonlinear equations.
Equations (41) and (58) show that the Jost solutions obtained by IST in reflection-
less case indeed satisfy the two Lax equations, so that, by the compatibility condi-
tion, the soliton solutions obtained by the IST method satisfy the DNLS equation
actually. It should be noted that all this demonstration is easily done with the in-
verse scattering spectrum parameter κ , since the residues of F̃ (x, t, κ)xF̃ (x, t, κ)′

and F̃ (x, t, κ)t F̃ (x, t, κ)′ in the limit of |κ| → ∞ are zero.
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